Answersheet for
CSIR NET June 2017

Mitotic recombination CSIR NET Classes in pune

Oct 23, 2016

Are you aware of recombination in mitosis?

 Mitotic recombination is a type of genetic recombination that may occur in somatic cells during their preparation for mitosis in both sexual and asexual organisms. In asexual organisms, the study of mitotic recombination is one way to understand genetic linkage because it is the only source of recombination within an individual. Additionally, mitotic recombination can result in the expression of recessive genes in an otherwise heterozygous individual. This expression has important implications for the study of tumorigenesis and lethal recessive genes.

The discovery of mitotic recombination came from the observation of twin spotting in Drosophila melanogaster. This twin spotting, or mosaic spotting, was observed in D. melanogaster as early as 1925, but it was only in 1936 that Curt Stern explained it as a result of mitotic recombination. Prior to Stern's work, it was hypothesized that twin spotting happened because certain genes had the ability to eliminate the chromosome on which they were located.  Later experiments uncovered when mitotic recombination occurs in the cell cycle and the mechanisms behind recombination.

 Twin spots consist of two genetically different clones of neighboring cells in a background of normal cells. The phenomenon is well known in plants and animals and is used as a marker to evaluate the recombinogenic activity of chemicals. The equivalent of the twin spot phenomenon in humans has only been described recently.

Mitotic recombination can happen at any locus but is observable in individuals that are heterozygous at a given locus. If a crossover event affects that locus, then both homologous chromosomes will have one chromatid containing each genotype. The resulting phenotype of the daughter cells depends on how the chromosomes line up on the metaphase plate. If the chromatids containing different alleles line up on the same side of the plate, then the resulting daughter cells will appear heterozygous and be undetectable, despite the crossover event. However, if chromatids containing the same alleles line up on the same side, the daughter cells will be homozygous at that locus. This results in twin spotting, where one cell presents the homozygous recessive phenotype and the other cell has the homozygous wild type phenotype. If those daughter cells go on to replicate and divide, the twin spots will continue to grow and reflect the differential phenotype.

 

Mitotic recombination takes place during interphase. It has been suggested that recombination takes place during G1, when the DNA is in its 2-strand phase, and replicated during DNA synthesis. It is also possible to have the DNA break leading to mitotic recombination happen during G1, but for the repair to happen after replication.

Mitotic crossover is known to occur in D. melanogaster, some asexually reproducing fungi and in normal human cells, where the event may allow normally recessive cancer-causing genes to be expressed and thus predispose the cell in which it occurs to the development of cancer. Alternately, a cell may become a homozygous mutant for a tumor-suppressing gene, leading to the same result. Bloom's syndrome is caused by a mutation in RecQ helicase, which plays a role in DNA replication and repair. Bloom syndrome is an autosomal recessive disorder, caused by mutations in the maternally- and paternally-derived copies of the gene BLM. As in other autosomal recessive conditions, the parents of an individual with Bloom syndrome do not necessarily exhibit any features of the syndrome. The mutations in BLM associated with Bloom syndrome are nulls and missense mutations that are catalytically inactive. The cells from persons with Bloom syndrome exhibit a striking genomic instability that is characterized by hyper-recombination and hyper-mutation.

CSIR NET Coaching Institutes

 

Return